The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis.

نویسندگان

  • Carolin Delker
  • Louisa Sonntag
  • Geo Velikkakam James
  • Philipp Janitza
  • Carla Ibañez
  • Henriette Ziermann
  • Tom Peterson
  • Kathrin Denk
  • Steffi Mull
  • Jörg Ziegler
  • Seth Jon Davis
  • Korbinian Schneeberger
  • Marcel Quint
چکیده

Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor phytochrome interacting factor 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is currently not understood how temperature regulates PIF4 activity. Using a forward genetic approach in Arabidopsis thaliana, we present extensive genetic evidence demonstrating that the de-etiolated 1 (DET1)-constitutive photomorphogenic 1 (COP1)-elongated hypocotyl 5 (HY5)-dependent photomorphogenesis pathway transcriptionally regulates PIF4 to coordinate seedling growth in response to elevated temperature. Our findings demonstrate that two of the most prevalent environmental cues, light and temperature, share a much larger set of signaling components than previously assumed. Similar to the toolbox concept in animal embryonic patterning, multipurpose signaling modules might have evolved in plants to translate various environmental stimuli into adaptational growth processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DET1 and HY5 Control PIF4-Mediated Thermosensory Elongation Growth through Distinct Mechanisms

Plant growth and development are defined by environmental cues. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is the central signaling hub that integrates environmental cues, including light and temperature, to regulate growth and development. The thermosensory mechanisms controlling the PIF4-mediated temperature response, and its integration with other environmental response...

متن کامل

PICKLE is a repressor in seedling de-etiolation pathway.

Light plays a vital role in seedling de-etiolation during which it remarkably inhibits hypocotyl growth and promotes cotyledon opening and the synthesis of chlorophyll and anthocyanin. After light perception, photoreceptors act to repress two main branches of the light signaling, PIFs and COP1-HY5. We recently identified PKL/EPP1, a chromatin remodeling factor, as a new component in regulating ...

متن کامل

The Photomorphogenesis Regulator DET1 Binds the Amino-Terminal Tail of Histone H2B in a Nucleosome Context

Light provides a major source of information from the environment during plant growth and development. Recent results suggest that the key events controlling light-regulated gene expression in plants are translocation of the phytochrome photoreceptors into the nucleus, followed by their binding to transcription factors such as PIF3. Coupled with this, the degradation of positively acting interm...

متن کامل

Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8).

Arabidopsis COP1 is a negative regulator of photomorphogenesis, which targets HY5, a positive regulator of photomorphogenesis, for degradation via the proteasome pathway in the absence of light. COP1 and its interactive partner CIP8 both possess RING finger motifs, characteristic of some E3 ubiquitin ligases. Here we show that CIP8 promotes ubiquitin attachment to HY5 in E2-dependent fashion in...

متن کامل

Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes.

COP10 is a ubiquitin-conjugating enzyme variant (UEV), which is thought to act together with COP1, DET1, and the COP9 signalosome (CSN) in Arabidopsis to repress photomorphogenesis. Here, we demonstrate that COP10 interacts with ubiquitin-conjugating enzymes (E2s) in vivo, and can enhance their activity in vitro, an activity distinct from previous characterized UEVs such as MMS2 and UEV1. Furth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2014